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PURPOSE In the last lecture, we discussed a number of ways to properly estimate the means and variances
of complex survey designs. In this lecture, we’ll discuss how to use Stata’s internal svy commands and various
variance estimation methods to more easily and correctly estimate what we want.

Complex survey designs: Cluster sampling and stratification

In the NCES surveys you’ll be using this semester, the designers combined a design that includes multistage
cluster sampling with stratification. In ECLS, for example, the designers designated counties as PSUs. They
next stratified the sample by creating strata that combined census region with msa status, percent minority,
and per capita income. They then randomly selected schools within each PSU (schools were the SSUs) and
then randomly selected kindergarteners within each school (students were the TSUs). They then created
two strata for each school with Asian and Pacific Islander students in one stratum and all other students in
the other. Students were randomly sampled within this second stratum. The target number of children per
school was 24.

Weights in complex survey designs such as the one employed with ECLS are calculated via the same that we
discussed in the last lecture. Nothing changes except for the layers of complexity. The good news, however, is
that we a researchers don’t have to compute the weights ourselves. Instead, we can use information provided
by the survey makers.

The PSUs that are provided by NCES are what is known as “analysis PSUs”. They aren’t the identifier for
the actual school or student. Instead, they are allocated within strata (many times 2 PSU per strata). Strata
themselves may be analysis strata, that is, not the same strata that were used to run the survey. Oftentimes,
this is done in service of further protecting the anonimity of participants. As far your analyses go, the end
result is the same, but sometimes this can be a source of confusion.

Variance estimation in complex survey designs

There are four common options for estimating variance in complex survey designs:

1. Taylor series linearized estimates
2. Balanced repeated replication (BRR) estimates
3. Jackknife estimates
4. Bootstrap estimates

Remember that these are all estimates: you cannot directly compute the variance of quantities of interest
from complex surveys. Instead, you must use one of these techniques, with trade-offs for each. We’ll be using
a couple of datasets for this lesson:

• nhanes, which is a health survey conducted using a complex survey design that comes with a variety of
weights

• nmihs_bs, which is a survey of births that comes with bootstrap replicate weights

Let’s start with the nhanes dataset from which we’d like to get average height weight and age for the US
population. First, let’s get the naive estimate:
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. webuse nhanes2f, clear

. // naive mean

. mean age height weight

Mean estimation Number of obs = 10,337

--------------------------------------------------------------
| Mean Std. Err. [95% Conf. Interval]

-------------+------------------------------------------------
age | 47.5637 .1693381 47.23177 47.89564

height | 167.6512 .0950124 167.465 167.8375
weight | 71.90088 .1510277 71.60484 72.19692

--------------------------------------------------------------

We can also take a look at the sampling design, particularly the designation of strata and PSUs:

. tab stratid psuid

stratum | primary sampling
identifier | unit, 1 or 2

, 1-32 | 1 2 | Total
-----------+----------------------+----------

1 | 215 165 | 380
2 | 118 67 | 185
3 | 199 149 | 348
4 | 231 229 | 460
5 | 147 105 | 252
6 | 167 131 | 298
7 | 270 206 | 476
8 | 179 158 | 337
9 | 143 100 | 243

10 | 143 119 | 262
11 | 120 155 | 275
12 | 170 144 | 314
13 | 154 188 | 342
14 | 205 200 | 405
15 | 189 191 | 380
16 | 177 159 | 336
17 | 180 213 | 393
18 | 144 215 | 359
20 | 158 125 | 283
21 | 102 111 | 213
22 | 173 128 | 301
23 | 182 158 | 340
24 | 202 232 | 434
25 | 139 115 | 254
26 | 132 129 | 261
27 | 144 139 | 283
28 | 135 163 | 298
29 | 287 215 | 502
30 | 166 199 | 365
31 | 143 165 | 308
32 | 239 211 | 450
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-----------+----------------------+----------
Total | 5,353 4,984 | 10,337

We can use the weights supplied with nhanes to get accurate estimates of the means, but the variance
estimates will be off:

. mean age height weight [pw = finalwgt]

Mean estimation Number of obs = 10,337

--------------------------------------------------------------
| Mean Std. Err. [95% Conf. Interval]

-------------+------------------------------------------------
age | 42.23732 .1617236 41.92031 42.55433

height | 168.4625 .1139787 168.2391 168.686
weight | 71.90869 .1802768 71.55532 72.26207

--------------------------------------------------------------

svyset and svy: <command>

To aid in the analysis of complex survey data, Stata has incorporated the svyset command and the svy:
prefix, with its suite of commands. With svyset, you can set the PSU (and SSU and TSU if applicable), the
weights, and the type of variance estimation along with the variance weights (if applicable). Once set, most
Stata estimation commands such as mean can be combined with svy: in order to produce correct estimates.

Variance estimators

Taylor series linearized estimates

Taylor series linearized estimates are based on the general strategy of Taylor series estimation, which is used
to linearize a non-linear function in order to describe the function in question. In this case, a Taylor series is
used to approximate the function, and the variance of the result is the estimate of the variance.

The basic intuition behind a linearized estimate is that the variance in a complex survey will be a nonlinear
function of the set of variances calculated within each stratum. We can calculate these, then use the first
derivative of the function that would calculate the actual variance as a first order approximation of the actual
variance. This works well enough in practice. To do this, you absolutely must have multiple PSUs in each
stratum so you can calculate variance within each stratum.

This is the most common method and is used as the default by Stata. You must, however, have within-stratum
variance among PSUs for this to work, which means that you must have at least two PSUs per stratum. This
lonely PSU problem is common and difficult to deal with. We’ll return the lonely PSU later.

To set up a dataset to use linearized estimates in Stata, we use the svyset command:

. // set survey characteristics with svyset

. svyset psuid [pweight = finalwgt], strata(stratid)

pweight: finalwgt
VCE: linearized

Single unit: missing
Strata 1: stratid

SU 1: psuid
FPC 1: <zero>
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Now that we’ve set the data, every time we want estimates that reflect the sampling design, we use the svy:
<command> format:

. svy: mean age height weight
(running mean on estimation sample)

Survey: Mean estimation

Number of strata = 31 Number of obs = 10,337
Number of PSUs = 62 Population size = 117,023,659

Design df = 31

--------------------------------------------------------------
| Linearized
| Mean Std. Err. [95% Conf. Interval]

-------------+------------------------------------------------
age | 42.23732 .3034412 41.61844 42.85619

height | 168.4625 .1471709 168.1624 168.7627
weight | 71.90869 .1672315 71.56762 72.24976

--------------------------------------------------------------

As you can see, the parameter estimates (means) are exactly the same as using the weighted sample, but the
standard errors are quite different: nearly twice as large for age, but actually smaller for weight.

Balanced repeated replication (BRR) estimates

In a balanced repeated replication (BRR) design, the quantity of interests is estimated repeatedly by using
half the sample at a time. In a survey which is designed with BRR in mind, each sampling stratum contains
two PSUs. BRR proceeds by estimating the quantity of interest from one of the PSUs within each stratum.
For H strata, 2H replications are done, and the variance of the quantity of interest across these strata forms
the basis for the estimate.

BRR weights are usually supplied with a survey. These weights result in appropriate half samples being
formed across strata. BRR weights should generally be used when the sample was designed with them in
mind, and not elsewhere. This can be a serious complication when survey data are subset.

To get variance estimates using BRR in stata, you either need to have a set of replicate weights set up or you
need to create a set of balanced replicates yourself. If the data has BRR weights it’s simple:

. webuse nhanes2brr, clear

. // svyset automagically

. svyset

pweight: finalwgt
VCE: brr
MSE: off

brrweight: brr_1 brr_2 brr_3 brr_4 brr_5 brr_6 brr_7 brr_8 brr_9 brr_10 brr_11
brr_12 brr_13 brr_14 brr_15 brr_16 brr_17 brr_18 brr_19 brr_20 brr_21
brr_22 brr_23 brr_24 brr_25 brr_26 brr_27 brr_28 brr_29 brr_30 brr_31
brr_32

Single unit: missing
Strata 1: <one>

SU 1: <observations>
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FPC 1: <zero>

. // compute mean using svy pre-command and brr weights

. svy: mean age height weight
(running mean on estimation sample)

BRR replications (32)
----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5
................................

Survey: Mean estimation Number of obs = 10,351
Population size = 117,157,513
Replications = 32
Design df = 31

--------------------------------------------------------------
| BRR
| Mean Std. Err. [95% Conf. Interval]

-------------+------------------------------------------------
age | 42.25264 .3013406 41.63805 42.86723

height | 168.4599 .14663 168.1608 168.7589
weight | 71.90064 .1656452 71.5628 72.23847

--------------------------------------------------------------

If you don’t have the data set up this way, you need to create a Hadamard with dimensions equal to the
number of strata. Hadamard matrices are special in that they are square matrices comprised of 1s and -1s
that arranged in such a way that each row and column sums to zero (equal numbers of ones and negative
ones) and adjacent rows/columns are orthogonal (correlation of zero).

. webuse nhanes2, clear

. // create Hadamard matrix in Mata

. mata: h2 = (1, 1 \ 1, -1)

. mata: h4 = h2 # h2

. mata: h8 = h2 # h4

. mata: h16 = h2 # h8

. mata: h32 = h2 # h16

. // check row and column sums

. mata: rowsum(h32)
1

+------+
1 | 32 |
2 | 0 |
3 | 0 |
4 | 0 |
5 | 0 |
6 | 0 |
7 | 0 |
8 | 0 |
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9 | 0 |
10 | 0 |
11 | 0 |
12 | 0 |
13 | 0 |
14 | 0 |
15 | 0 |
16 | 0 |
17 | 0 |
18 | 0 |
19 | 0 |
20 | 0 |
21 | 0 |
22 | 0 |
23 | 0 |
24 | 0 |
25 | 0 |
26 | 0 |
27 | 0 |
28 | 0 |
29 | 0 |
30 | 0 |
31 | 0 |
32 | 0 |

+------+

. mata: colsum(h32)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

+---------------------------------------------------------------------------------
1 | 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

+---------------------------------------------------------------------------------
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

---------------------------------------------------------------------------------+
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |

---------------------------------------------------------------------------------+

. // save Mata matrix in Stata matrix form

. mata: st_matrix("h32", h32)

Now that we’ve made our matrix, we can use it with the BRR command to get our estimates:

. svy brr, hadamard(h32): mean age height weight
(running mean on estimation sample)

BRR replications (32)
----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5
................................

Survey: Mean estimation

Number of strata = 31 Number of obs = 10,351
Number of PSUs = 62 Population size = 117,157,513

Replications = 32
Design df = 31
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--------------------------------------------------------------
| BRR
| Mean Std. Err. [95% Conf. Interval]

-------------+------------------------------------------------
age | 42.25264 .2779063 41.68585 42.81944

height | 168.4599 .1411963 168.1719 168.7479
weight | 71.90064 .1620071 71.57022 72.23105

--------------------------------------------------------------

Jackknife estimates

The Jackknife is a general strategy for variance estimation, so named by Tukey because of its general
usefulness. The strategy for creating a jackknifed estimate is to delete every observation save one, then
estimate the quantity of interest. This is repeated for every single observation in the dataset. The variance of
every estimate computed provides an estimate of the variance for the quantity of interest.

In a complex sample, this is done by PSUs, deleting each PSU one at a time and re-weighting the observations
within the stratum, then calculating the parameter of interest. The variance of these parameters estimates is
the within-stratum variance estimate. The within stratum variances calculated this way are then averaged
across strata to give the final variance estimate.

The jackknife is best used when Taylor series estimation cannot be done, for instance in the case of lonely
PSUs.

In Stata, the command is:

. webuse nhanes2jknife, clear

. // set svyset using jackknife weigts

. svyset [pweight = finalwgt], jkrweight(jkw_*) vce(jackknife)

pweight: finalwgt
VCE: jackknife
MSE: off

jkrweight: jkw_1 jkw_2 jkw_3 jkw_4 jkw_5 jkw_6 jkw_7 jkw_8 jkw_9 jkw_10 jkw_11
jkw_12 jkw_13 jkw_14 jkw_15 jkw_16 jkw_17 jkw_18 jkw_19 jkw_20 jkw_21
jkw_22 jkw_23 jkw_24 jkw_25 jkw_26 jkw_27 jkw_28 jkw_29 jkw_30 jkw_31
jkw_32 jkw_33 jkw_34 jkw_35 jkw_36 jkw_37 jkw_38 jkw_39 jkw_40 jkw_41
jkw_42 jkw_43 jkw_44 jkw_45 jkw_46 jkw_47 jkw_48 jkw_49 jkw_50 jkw_51
jkw_52 jkw_53 jkw_54 jkw_55 jkw_56 jkw_57 jkw_58 jkw_59 jkw_60 jkw_61
jkw_62

Single unit: missing
Strata 1: <one>

SU 1: <observations>
FPC 1: <zero>

Now we can compare the naive estimates with the svyset estimates:

. mean age weight height

Mean estimation Number of obs = 10,351

--------------------------------------------------------------
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| Mean Std. Err. [95% Conf. Interval]
-------------+------------------------------------------------

age | 47.57965 .1692044 47.24798 47.91133
weight | 71.89752 .1509381 71.60165 72.19339
height | 167.6509 .0949079 167.4648 167.8369

--------------------------------------------------------------

. // compute mean with jackknife weights

. svy: mean age weight height
(running mean on estimation sample)

Jackknife replications (62)
----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5
.................................................. 50
............

Survey: Mean estimation

Number of strata = 31 Number of obs = 10,351
Population size = 117,157,513
Replications = 62
Design df = 31

--------------------------------------------------------------
| Jackknife
| Mean Std. Err. [95% Conf. Interval]

-------------+------------------------------------------------
age | 42.25264 .3026765 41.63533 42.86995

weight | 71.90064 .1654453 71.56321 72.23806
height | 168.4599 .1466141 168.1609 168.7589

--------------------------------------------------------------

Bootstrap estimates

The bootstrap is a more general method than the jackknife. Bootstrapping involves repeatedly resampling
within the sample itself and generating estimates of the quantity of interest. The variance of these replications
(usually many, many replications) provides an estimate of the total variance. In NCES surveys, within stratum
bootstrapping can be used, with the sum of the variances obtained used as an estimate of the population
variance. Bootstrapping is an accurate, but computationally intense method of variance estimation.

As with the jackknife, bootstrapping must be accomplished by deleting each PSU within the stratum one
at a time, re-weighting, calculating the estimate, than calculating the bootstrap variance estimate from the
compiled samples.

. webuse nmihs_bs, clear

. // svyset

. svyset idnum [pweight = finwgt], vce(bootstrap) bsrweight(bsrw*)

pweight: finwgt
VCE: bootstrap
MSE: off

bsrweight: bsrw1 bsrw2 bsrw3 bsrw4 bsrw5 bsrw6 bsrw7 bsrw8 bsrw9 bsrw10 bsrw11
<.................................................................>
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bsrw993 bsrw994 bsrw995 bsrw996 bsrw997 bsrw998 bsrw999 bsrw1000
Single unit: missing

Strata 1: <one>
SU 1: idnum

FPC 1: <zero>

. // convert birth weight grams to lbs for the Americans

. gen birthwgtlbs = birthwgt * 0.0022046
(7 missing values generated)

. // compute naive mean birthweight

. mean birthwgtlbs

Mean estimation Number of obs = 9,946

--------------------------------------------------------------
| Mean Std. Err. [95% Conf. Interval]

-------------+------------------------------------------------
birthwgtlbs | 6.272294 .0217405 6.229678 6.31491

--------------------------------------------------------------

. // compute mean with svy bootstrap

. svy: mean birthwgtlbs
(running mean on estimation sample)

Bootstrap replications (1000)
----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5
.................................................. 50
.................................................. 100
.................................................. 150
.................................................. 200
.................................................. 250
.................................................. 300
.................................................. 350
.................................................. 400
.................................................. 450
.................................................. 500
.................................................. 550
.................................................. 600
.................................................. 650
.................................................. 700
.................................................. 750
.................................................. 800
.................................................. 850
.................................................. 900
.................................................. 950
.................................................. 1000

Survey: Mean estimation Number of obs = 9,946
Population size = 3,895,562
Replications = 1,000

--------------------------------------------------------------
| Observed Bootstrap Normal-based
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| Mean Std. Err. [95% Conf. Interval]
-------------+------------------------------------------------
birthwgtlbs | 7.39743 .0143754 7.369255 7.425606

--------------------------------------------------------------

Lonely PSUs

The most common problem that students have with complex surveys is what is known as “lonely PSUs.”
When you subset the data, you may very well end up with a sample that does not have mutliple PSUs per
stratum. There are several options for what do in this case:

• Eliminate the offending data by dropping strata with singleton PSUs. This is a terrible idea.
• Reassign the PSU to a neighboring stratum. This is okay, but you must have a reason why you’re

doing this.
• Assign a variance to the stratum with a singleton PSU. This could be the average of the variance across

the other strata. This process is also known as “scaling” and generally is okat, but you should take a
look at how different this stratum is from the others before proceeding.

The svyset command includes three possible options for dealing with loney PSUs. Based on the above,
I recommend you use the singleunit(scaled) command, but with caution and full knowledge of the
implications for your estimates.

Init: 23 August 2015; Updated: 24 August 2015
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